If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+4x=172
We move all terms to the left:
12x^2+4x-(172)=0
a = 12; b = 4; c = -172;
Δ = b2-4ac
Δ = 42-4·12·(-172)
Δ = 8272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8272}=\sqrt{16*517}=\sqrt{16}*\sqrt{517}=4\sqrt{517}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{517}}{2*12}=\frac{-4-4\sqrt{517}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{517}}{2*12}=\frac{-4+4\sqrt{517}}{24} $
| 39.99a+0.45a=39.99a+0.40a | | 7x-8=3x+16. | | 2.5x+0.5=6.26 | | (2x+1)/2=4x/(2x+1) | | 24=9p | | 8=2(x-5+6x | | c^2=7056 | | a÷4+9=13 | | -9d-1=13 | | -(x-11)=14 | | -2/5x+4=-8 | | 7,056=c^2 | | 39.99p+0.45p=44.99p+0.40p | | 39.99p+0.45=44.99p+0.40 | | x–(-4)=11 | | 4002/z=46 | | 150/6.28=r | | -6(2k-3)=10 | | 15y=45;y | | 9x+11=16x-13 | | 6p-25=41 | | 45=9(h+3) | | -1.2n=12 | | w+15/5=7 | | -4.9x^2+4.8x+0.1=0 | | -10(k-96)=-10 | | n/1.65=5 | | 79=5w+24 | | t+16/6=5 | | 33=m−51 | | 55h=55h+5 | | 10m-15m=40 |